04000MR402052001 Pages: 2

	Reg No.:	Name:
--	----------	-------

A

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Eighth semester B.Tech degree examinations, September 2020

Course Code: MR402

Course Name: Soft Computing Techniques				
Max. Marks: 100 Duration: 3 Hou			Hours	
PART A Answer all questions, each carries 5 marks Marks				
1		Answer all questions, each carries 5 marks.		
1		Describe about the soft computing constituents and conventional artificial	(5)	
		intelligence.		
2		Differentiate between derivative-based and derivative-free optimization	(5)	
3	Identify the common characteristics of derivative-free optimization methods.		(5)	
4		Show the functional equivalence of RBFN and the conditions under which an	(5)	
		RBFN and a FIS are functionally equivalent.		
5		Draw equivalent ANFIS architecture for a two-input two-rule Tsukamoto fuzzy	(5)	
		model.		
6	6 Explain the Neuro-fuzzy spectrum.		(5)	
Write about the modeling of the inverse Kinetics of the two-joint planar robo		(5)		
		arm using ANFIS.		
8		Illustrate GA search control by the modified simplex crossover.	(5)	
PART B				
Answer any three full questions, each carries 10 marks.				
9		Define support, core, normality, crossover points and fuzzy singleton.	(10)	
10		Distinguish among different types of defuzzification schemes for obtaining a	(10)	
		crisp output.		
11		Design travelling salesman problem using simulated annealing.	(10)	
12		Set up a Kohonen self-organizing network with 2 inputs and 49 output units and	(10)	
		its training.		
13	a)	Assess an expert system.	(5)	
	b)	Explain the block diagram of a fuzzy inference system.	(5)	
14	a)	Discuss about Adaptive linear element.	(5)	
	b)	Examine the Hebbian learning.	(5)	
	,	<i>5</i>	` /	

04000MR402052001

PART C

Answer any two full questions, each carries 15 marks.

- 15 a) Express equivalent ANFIS architecture for a two-input first-order Sugeno fuzzy (10) model with two rules and explain each layer.
 - b) Illustrate the Sugeno model reasoning mechanism for the following common (5) rule set with two fuzzy if-then rules.

Rule1: If x is A_1 and y is B_1 , then $f_1=p_1x+q_1y+r_1$,

Rule2: If x is A_2 and y is B_2 , then $f_2=p_2x+q_2y+r_2$.

- 16 a) Explain the architecture of CANFIS with five color rules for color recipe (10) prediction.
 - b) List down the main concerns in color recipe prediction. (5)
- 17 a) Identify nonlinear rule for neuron functions in Adaptive networks. (7)
 - b) Outline the architecture of color paint manufacturing intelligence. (8)
